We present a categorical construction for modelling both definite and indefinite causal structures within a general class of process theories that include classical probability theory and quantum theory.
Unlike prior constructions within categorical quantum mechanics, the objects of this theory encode fine-grained causal relationships between subsystems and give a new method for expressing and deriving consequences for a broad class of causal structures. To illustrate this point, we show that this framework admits processes with definite causal structures, namely one-way signalling processes, non-signalling processes, and quantum n-combs, as well as processes with indefinite causal structure, such as the quantum switch and the process matrices of Oreshkov, Costa, and Brukner. We furthermore give derivations of their operational behaviour using simple, diagrammatic axioms.